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Abstract: The  discipline  of  economics  is  undergoing  a  critical  re-evaluation  of  its

methods. The mainstream has tried to become a ‘hard science’ by attempting to adopt the

mathematical formalism and quantitative methods of physics. However there are two stages in

comparing models to what happens in the world: first the production of data from real world

phenomena,  then  the  comparison  of  that  data  to  models.  Just  as  experimental  particle

physicists  pay  close  attention  to  the  physics  of  particle  detection,  economists  as  social

scientists must pay attention to the social science of the production of data from the social

world.  Lifeworld economics thus places emphasis on the first stage – producing data that

gives access to people’s lifeworlds. This paper justifies the use of the Biographic-Narrative-

Interpretive Method in studying the economic development of Slovenia. The method uses the

uninterrupted narratives of key informants, comparing the telling of their life stories to the

actual  courses  of  their lives.  This approach is being used in the ongoing research  project

Habitus of the Slovene Entrepreneur, where we have interviewed several of the key managers

in the development of the Slovene industrial system during socialism. In terms of Margaret

Archer’s realist social theory, we are accessing their evolving ‘internal conversations’ as they

navigated the courses of their own biographies, tied to the management of their companies,

leading  to  industrial  development  under  the  very  complex  and  opaque  Yugoslav  socio-

economic system. The reason that the Slovene case is so interesting is that Slovenia developed

fairly  rapidly  under  socialism  and  took  a  very  gradualist  approach  to  transition  upon

independence. It is therefore instructive to see how that system was made to work, and is

largely still functioning, under a very peculiar ‘heterodox’ economic system. We are now in

the  process  of  analysing  the  narratives  of  the  managers  in  our  attempt  to  put  economic

pluralism into action.



1. Introduction

This  paper  provides  the  theoretical  underpinning  of  the  project Habitus  of  the  Slovene

Entrepreneur, which is an ongoing research project on lifeworld economics. Note that while I

have recently (Turk 2007) used the term interpretive economics to describe the method used

in the Habitus research project,  in this paper I have switched to using the term lifeworld

economics  to  refer  to  the  subject  matter  to  which  the  proposed  method  of  interpretive

economics is well tuned. This is because I take the subject matter as prior to the method used

for its study.  The term lifeworld economics is thus used to make it clear  that  the subject

matter of the research is not some abstract economy providing generic data from which we

can fathom general economic laws, but is rather a historically situated economic reality that

was lived in one particular socio-historical case.

This  paper  thus  provides  an  underpinning  for  the  switch  from  a  mathematically  based

approach  to  economics  to  an  interpretive  method  better  suited  to  the  subject  matter  of

lifeworld economics. The interpretive method used is only summarized, since it is available

elsewhere (Turk 2007). So this is mostly a why paper with a brief review of how and some

hints at outcomes.

The reason I will put forth for why we should favour interpretive methods to mathematical

ones is due to the impossibility of the treatment of systematic uncertainty as it is done in the

physical sciences, which precludes a similar usefulness of abstract mathematical models in the

social sciences as compared to physics. In anticipation of a more detailed discussion below, I

just note here that measurement uncertainties in experimental physics are divided into two

components:  statistical  uncertainty,  which  is  associated  with  precision;  and  systematic

uncertainty, which is associated with accuracy. Both are quoted together (not combined) for

any measurement of a physical quantity. Estimation of systematic uncertainty is crucial for an

experiment, since it sets a limit on the total uncertainty that cannot be improved by increased

statistical precision.

The  paper  fits  within  the  growing  literature  questioning  the  practice  of  ‘orthodox’  or

‘mainstream’ economics, where economics is defined as much by its methods as by the object
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of its study.  Lawson, for instance, recounts (Lawson 2003, 3) “four theses on the state of

modern economics”:

• Academic economics is currently dominated to a very significant degree by a mainstream tradition or

orthodoxy, the essence of which is an insistence on methods of mathematical-deductivist modelling.

• This mainstream project is not in too healthy a condition.

• A major  reason why the mainstream project performs so poorly is  that  mathematical-deductivist

methods are being applied in conditions for which they are not appropriate.

• Despite  ambitions  to  the  contrary,  the  modern  mainstream  project  mostly  serves  to  constrain

economics  from realising  its  (nevertheless  real)  potential  to  be  not  only  explanatorily  powerful,  but

scientific in the sense of natural science.

There are numerous good critiques of the use of mathematics in economics (e.g. Lawson 1997

and 2003; Fullbrook 2004). One of the major issues in this literature is that of methodological

monism/dualism. Critics of the mainstream project argue for pluralism in economics, whereas

proponents of the mainstream project, such as Mark Blaug argue ‘the case for methodological

monism’ (Blaug 1980: 46-52). This paper argues that because of the non-treatment of

systematic uncertainty, there is already de facto methodological dualism between economics

and experimental physics, so that the mainstream argument for monism does not actually

reflect the current state of economics. But furthermore, I argue that because of the nature of

the data available in economics, which precludes a similar treatment of systematic

uncertainty, methodological monism between economics and experimental physics is not even

tenable.

This paper in particular builds upon an argument by Gillies (2004), who asks: ‘Can

mathematics be used successfully in economics?’ To which he answers (ibid.: 197): ‘The

application of mathematics to economics has proved largely unsuccessful because it is based

on a misleading analogy between economics and physics.’ Gillies suggests that (ibid.: 197):

‘Economics would do much better to model itself on another very successful area, namely

medicine, and, like much of medicine, to adopt a qualitative causal methodology.’ Although I

do not necessarily support using a borrowed model from medicine, his reasons for rejecting

the physics analogy are sound and the purpose of this paper is to strengthen that argument.

So to begin with, let us recall his argument:
[T]here is a fundamental difference between physics and economics which could be put like this. The

physical world appears on the surface to be qualitative, and yet underneath it obeys precise quantitative

laws. That is why mathematics works in physics. Conversely economics appears to be mathematical on the
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surface, but underneath it is really qualitative. This is why attempts to create a successful mathematical

economics have failed. (ibid.: 190)

He suggests that the reason that economic phenomena appear to be well suited to

mathematical treatment is that the relevant quantities all come with numbers attached (ibid.:

191): ‘Thus goods have prices, firms have a market value, and each item in a firm’s accounts

is given an exact monetary value.’ Gillies’ main contribution is his argument that
…this appearance is misleading because the numbers attached to economic phenomena are what [he]

propose[s] to call operational numbers. Whereas numbers in physics are estimates, which may be more or

less accurate, of exact quantities which exist in reality, operational numbers do not correspond to any real

quantities. They are a convenient, but sometimes misleading, way of summing up a complicated,

qualitative situation. Moreover their values depend to a large extent on conventional decisions and

procedures and are therefore arbitrary to a degree. Operational numbers are the numerical surface form of

an underlying reality which is qualitative in character. (ibid.: 191; emphasis in the original)

Another treatment of economic quantities and their measurement is given in Reiss (2001).

Reiss discusses the difference between ‘natural’ and ‘ficticious’ quantities in economics,

where ‘natural quantities are those whose behaviour is described by our causal laws and

which can be measured in a non-ambiguous way’ (Reiss 2001: 1-2). However this still differs

from the (critical) realist stance that the underlying quantities in physics are unambiguously

ontologically real (at least at the point at which they are measured, taking quantum

complications into account) independently of epistemological considerations of whether or

not our causal laws describe their behaviour or we have an unambiguous measurement

procedure. Describing the quantities of economics as operational numbers is therefore

arguably more appropriate.

Gillies (2004: 193-5) examines the use of operational numbers in the economics. He first

gives as example the calculation of the goodwill value of a firm, and then discusses GDP as

an ‘excellent example of an operational number’ (Gillies 2004: 195). Thus GDP is the end

result of a calculation procedure and there is no connection between the computed GDP and a

really existing quantity somehow out there. Since Gillies provides his own examples, what I

do in this paper instead is to go into further depth in examining some of the standard practices

from physics in order to explain why the techniques of physics are incompatible with the use

of operational numbers.

We should first note that not all science is physics, nor are the methods used in experimental

elementary particle physics the appropriate tools for all of the physical sciences. However my

focus is on economics, which tends to use (see Gillies’ analysis above) abstract physics as its

model; therefore the counterexample of physics with emphasis on the use of data in
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experimental physics is useful for comparison. Likewise not all social science is done like

economics, which I criticise in order to help clear the way for more suitable approaches to the

study of economic issues.

My focus in this paper is restricted to consideration of how data is actually used in the

experimental physical sciences in determining how well a given abstract model, for instance

the Standard Model of particle physics, represents what happens in the real world. I do not

explicitly consider the development of the model, nor how it has come to supplant other

possible models. Instead I only consider the comparison of measured data against the abstract

model. I then address the problem of using (or indeed not using) similar techniques with the

data available in the social sciences.

So let me first set out the main points to be made in this paper before I outline its structure:

1. The techniques of physics cannot be used with the kinds of data available in the social

sciences, which mostly consists of operational numbers.

2. This is because the relation between the operational number and the real physical

quantity to which it should refer is not well defined, which precludes an adequate

treatment of systematic uncertainty.

3. Since the level of systematic uncertainty sets a lower bound on the total uncertainty in

a physical measurement, statistical analysis of data in the physical sciences is limited

according to the level of systematic uncertainty.

4. What this means is that whereas in the physical sciences the project (which is achieved

to a remarkable degree) is to use measured data to probe whether and how well the

models we have created fit what actually happens in the physical world, the best that

can be done in the social sciences is to find how well a given model fits the available

data, not fully treating the relationship between the data and the real world phenomena

giving rise to the data.

5. In order to go from probing how well the model fits the data to how well the model

accords with what happens in the physical world, an adequate treatment of systematic

uncertainty is required.

6. This treatment is not possible with operational numbers.

Having set out the main points, I will also set out a few other topics that will be addressed in

order to support them. I will sketch out a conceptual picture to help illustrate the physical and

social realms and where systematic uncertainty comes into play. I will also address the use of

various forms of friction in the physical sciences and why these forms of friction are not

invoked as explanation of discrepancies between model and observation in the physical
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sciences. Note that I am not addressing analogies of friction as explicit parts of economic

models, such as Williamson’s transaction costs or Tobin’s tax. What I address here is the

common use of an analogy to friction in playing down residual discrepancies in the data that

are not explicitly accounted for by the model used, as if it were common for such

discrepancies to arise in physics because of frictional effects. The treatment of frictional

effects is instead part of the treatment of systematic uncertainty and the effects are normally

quite well understood.

Let me also note that concept of uncertainty is fairly well developed in economics, usually in

terms of market uncertainties, probabilities, imperfect information and risk. Indeed

fundamental uncertainty is a key element of post-Keynesian economics (e.g. Dequech 2000).

Again, I am not addressing these kinds of concepts explicitly written into models or used as

part of our understanding of economic behaviour; I am instead specifically addressing the

very technical issue of the uncertainty involved in connecting the models (which may or may

not have some conceptualisation of friction or uncertainty explicitly incorporated within

them) to the real world through data. Even more directly, the issue is not at all the match

between the model/theory/school of thought (however it does or does not conceptualise

friction or uncertainty) and the data, but rather the uncertainty in the relationship between the

data and quantities in the real world. This is a crucial part of linking model/theory to real

world. In other words, there are two issues involved here: the first is real world to data, and

the second is data to model/theory. It is the first issue I address here.

Thus in more detail: In the first part of this paper I sketch out a simple schematic picture of

the emergence of social reality within the physical world. I then consider how the sciences

have developed as different subsystems within the human cultural system. The purpose of

introducing this picture is to provide a tentative but plausible tool for easier explanation of the

role of systematic uncertainty in experimental physics. This framework will only be used as

an aid in illustrating how data is used differently in economics and physics. It is those

differences that I wish to emphasize and not a detailed derivation of the picture I propose for

their illustration. What I try to get across is that systematic uncertainty is a very well

developed, institutionalised and indispensable concept in experimental physics. My schematic

framework is thus only introduced to help explain why it is so important and what the

implications are of neglecting it.

Mainstream economics involves the construction of abstract mathematical models for social

phenomena. These models can be fit to data with varying degrees of agreement, but not

perfectly. Since the residual misfit between data and model is often brushed off with reference
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to the effects of friction in physics, I devote a section in this paper to explaining that rather

than acting as some kind of nuisance to physicists, causing unavoidable discrepancies

between the observed universe and the underlying physical laws, the various forms of friction

are studied in detail, very well understood and used as essential tools in experimental physics.

In fact, a thorough understanding of different aspects of friction (processes involved in the

passage of particles through matter) is necessary in order even to design measuring equipment

for the purpose of studying the underlying processes in elementary particle physics, for

example, since the use of various forms of friction is essential for data acquisition. Of course

there are subtleties involved in the interaction of the phenomena studied and the experimental

set-up used for their study, but all sources of uncertainty deriving from friction or any other

source are usually quite predictable and are carefully studied for their effects. Such

uncertainties are captured and quantified within the estimate of the systematic uncertainty of

the measured quantity, which is carefully controlled so as not to dominate the total uncertainty

of the measurement.

I will therefore discuss the paramount importance of the treatment of systematic uncertainty in

experimental physics. In light of its centrality in experimental physics and its relative absence

in economics, I consider the consequences. I argue that the use of abstract mathematical

models in the social sciences is not as useful as in the physical sciences, and indeed can be

misleading, due to these inherent and insurmountable systematic uncertainties.

I should also note that in this paper I do not delve deeply into the very broad literature on the

philosophy of natural and social science, although the paper seems quite compatible with the

framework of critical realism, with its insistence on ontological realism and epistemological

fallibility. I should mention that while critical realists tend to (rightly) note the difficulty of

experimentation in the open systems characteristic of social phenomena, the language used in

experimental physics for describing the importance of controlled experimentation is again in

controlling for systematics or systematic uncertainty. Experiments are thus designed as closed

systems specifically to reduce the effects of what is discussed in this paper. This is why the

vocabulary of systematic uncertainty might be quite useful to critical realists in discussions of

the importance of the lack of closure in human social systems.

The Centre for Philosophy of Natural and Social Science at the London School of Economics

also has a set of discussion papers devoted to Measurement in Physics and Economics (e.g.

Reiss 2001; Frigg 2002). However I have not found anywhere in this literature any mention of

how the central concept of systematic uncertainty is dealt with in experimental physics, let

alone of its absence in the social sciences.
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I should also mention the related topic of validity in the social sciences. An introductory text

on Social Research Methods (Bryman 2001, 72; emphasis in the original) explains: ‘Validity

refers to the issue of whether an indicator (or set of indicators) that is devised to gauge a

concept really measures that concept’. Although this addresses an issue vaguely similar to

systematic uncertainty in physics, it is not quite the same. Systematic uncertainty deals

directly with the accuracy of a measured value compared to the true value of a real physical

quantity. Validity is more of an indirect concept that (rightly) questions whether that real

value is even out there. Kvale (1996: 229-52) in fact discusses in detail the social construction

of validity in the social sciences. He notes that the term is ‘often unfamiliar to natural

scientists’ (ibid. 230). Indeed it is not part of the everyday discourse of experimental physics,

while systematic uncertainty is essential.

So instead of trying to bridge the gap between the physical and social sciences by going

through a higher level philosophy of science/economics, I focus on how experimental

physicists specifically rely on the key concept of systematic uncertainty, and starting from

that perspective try to understand the implications of its absence in the social sciences. My

purpose is not to defend or reject science in general, but is limited to pointing out the problem

of trying to make social science appear equivalent to physics. I therefore launch my critique

of mainstream economics directly from the methods developed and used in experimental

physics.

Incidentally, it is worth noting that the problem of anchoring models to real world phenomena

is not at all absent even in theoretical physics. Insider Lee Smolin (2006) has recently written

a thought-provoking book on the emergence of string theory as the dominant research

programme in theoretical physics despite its apparent lack of connection to the real world. He

notes in a remarkable parallel to the mainstream of economics: ‘Despite the absence of

experimental support and precise formulation, the theory is believed by some of its adherents

with a certainty that seems emotional rather than rational’ (Smolin 2006: XX). Thus while I

do use physics as an ideal, I especially stress its experimental aspects.

In summary, I do not here address the construction or change of theories and models: I

address the testing of a particular model to see whether or not it is in complete agreement with

what we are able to observe in our own world. Experimental physics is not particularly

interested in how well a model fits the data, but how well the model describes what actually

happens in the real world to the greatest extent it can be measured using data; and for this an

accounting of systematic uncertainty is required.
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2. Social reality and the physical and social sciences
In this part of the paper I sketch a simple picture of the emergence of social reality in the

physical world. This simple picture is introduced only to help illustrate the concept of

systematic uncertainty in the next sections. I must note here that systematic uncertainty is a

very important concept in physics even without reference to this framework, which again is

only introduced for illustrative purposes. The sketch is therefore kept simple and only loosely

grounded in the literature.

I will present a very simple picture of reality where groups of physical and social scientists

form separate disciplines and develop different procedures for studying their different subject

matters. I will highlight the importance of the treatment of systematic uncertainty in the sub-

discipline of experimental particle physics. I consider what the absence of a similar treatment

of systematic uncertainty in other disciplines, particularly in the social sciences, means for the

connection between the physical world and the formal mathematical models often used in

those disciplines.

According to Klein & Edgar (2002) the modern human mind probably emerged about 40,000

years ago at the Dawn of Human Culture. At around that time modern humans apparently

crossed a threshold of self-awareness coupled with cognitive abilities that allowed culture to

flourish far beyond anything that had come before. There are now two levels of reality – one

that does not depend on human cognition – the physical world, and a new level of social

reality (see for instance Searle, 1995), which comprises an inter-subjective understanding of

the world, both social and physical mixed together. (This is also in line with the critical realist

insistence on the stratification of reality.)

Figure 1 is a conceptual diagram of the physical world, the projected image of that world we

acquired through the course of human interaction with it, and the social world built through

the social interaction of human actors with each other. The diagram is used to illustrate the

development of the separate disciplines of the social and physical sciences. First we start with

the assumption that there is a physical universe into which the human species evolved. This

physical universe along with physical human beings is depicted in the figure as area A. (No

dimensionality is implied by the word ‘area’, which is actually depicted as a volume in the

figure.) The image of that physical world by an observer is depicted as area B. However in the

case of humans, this picture of a duality of an external reality and a perceived image of that

reality is not quite sufficient. Humans are a highly social species. Very quickly infants

become socialised into their joint physical and social world with the help of their caretakers.
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They pick up the social meaning of physical objects through interactions with the objects and

their caretakers. (See e.g. Hala 1997 for a good reference on the development of social

cognition in children.) The social significances of objects are thus perpetuated through the

socialisation of children. The regions of area B that are separated by depth indicate that

different cultures or groups may have differing conceptualisations, images or social meanings

of the same physical object.

>> Figure 1 around here <<
Of course, once the capability of assigning different social meanings to physical objects has

developed, the ability to create social/conceptual objects without direct reference to a physical

object is an easy next step. We can call this social reality and depict it as area C in the figure.

The explosion of human culture over the past tens of millennia is then depicted as the rapid

growth and development of (culturally specific, although not necessarily isolated) social

reality in the figure. Historically recent developments are the expanding areas of mathematics

and the social and physical sciences. (A good reference on how mathematics is brought into

being is Lakoff and Nuñez 2000.)

Although developments of mathematics and the sciences are essentially parts of area C

without necessarily implying any difference from any other parts of area C, I have hived off

and moved areas D, the social sciences, and E, the physical sciences, down to the right for

easier exposition in the discussion to follow. We note that the models constructed by physical

scientists in area E refer to processes out in the physical realm of area A, even though the data

used for comparison with the models consist of measurements of assumed real physical

quantities, where the measured values (in area B) are accessible to and understandable by

people. In contrast, the data used in the social sciences in area D typically consist of

operational numbers or textual information referring to abstract quantities, socially acquired

answers to questionnaires, interview materials or data entered by people into tables or tax

forms. We will come back to this in a later section.

This simple conceptual diagram will provide a framework for better explanation of the very

real and important differences between the practices of experimental physics and those of

mainstream economics. Note that the diagram is also largely consistent with the ontological

realism and epistemological constructivism of critical realism.
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How does economics differ from physics?

In this section I further consider approaches to social science that use abstract mathematical

models in an attempt to make social science appear similar to physics. Lawson’s (2002: 247-

282) Chapter 10 ‘An explanation of the mathematising tendency in modern economics’

presents a good treatment of the problem for the field of economics, from whence the

tendency has spread to other branches of the social sciences. The main difference between the

economic approach to science and that of experimental physics derives from the fact that

physics deals with things that, to the greatest extent it can be measured, are actually out there

as real features of the physical world. This is in opposition to the use of the operational

numbers, which are all that is available in much of the social sciences. Thus what is typically

sought in economics (with arguably little success) is an abstract mathematical model that is

consistent with or at least partially explains patterns in the available data set of operational

numbers. If there is good consistency between the model and this data, then it is thought that

we have gained a better understanding of what happens in the world.

Having a good match between model and data is insufficient for experimental physics. We are

instead interested in how well the model fits with what actually happens out there in the

physical world. This entails understanding the relationship between the data and the physical

world; and this is where systematic uncertainty comes in, as will be discussed in the next

section.

One last key and pertinent difference I will discuss is how economics conceptualises frictional

effects. Experimental conditions that give rise to what might be loosely considered ‘friction’

are not some unavoidable complication that must simply be accepted and played down, but

are essential for understanding the relation between the measured values and the physical

quantities that produce them. Indeed, in experimental particle physics, there are no data

without taking advantage of one of many well-studied and understood forms of friction to

produce measurements of the underlying physical processes. In other words, friction is not

used as a term for inconvenient effects to be ignored in physics, which seems to be how it is

often understood in the social sciences when effects that are not well understood are said to be

analogous to the effects of friction in physics. This will be discussed further below.

Operational numbers, measurements and systematic uncertainty

Now we turn our attention to the difference between operational numbers and measurements

of physical quantities. The difference is that systematic uncertainty between the measurement
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and the physical quantity estimated is a well-defined (although perhaps often difficult to

estimate) quantity. On the other hand, an operational number is an ascribed indicator of a

conceptual quantity; and thus the uncertainty between the indicator and the true quantity

indicated need not be defined at all. This is because the quantity indicated is conceptual in

nature, requiring a (possibly composite) indicator to be defined as its proxy – in order to

operationalise the conceptual quantity.

This part of the paper takes a closer look at the concepts and techniques used for the

measurement of physical parameters including estimates of uncertainties in their measurement

in experimental elementary particle physics. Systematic uncertainty is an essential and core

consideration in experimental design, measurement and data analysis in the physical sciences.

First I discuss what systematic uncertainty is and how it is treated in the physical sciences,

and then I consider the implications of its non-treatment.

Although measurements in physics may not always be particularly accurate, the relationship

and associated uncertainties between the measurement (which may be a composite

measurement calculated on the basis of various bits of measured data), and the underlying

physical quantity estimated are always explicitly quantified as part of the measurement. Thus

when dealing with data in terms of a given abstract mathematical-theoretical model, the

model is always conceptualised as having relevance at the level of what is really out there,

whereas the experimenter only has measurements of those physical quantities at her disposal.

It is therefore of crucial importance to be able to quantify how well the measurement

approximates the underlying physical parameter. Again, the experimenter is not interested in

possible relations between the measured quantities, but in the relations between the real

physical quantities that give rise to them.

In the physical sciences, uncertainty is always broken down into two types: statistical and

systematic, where the total uncertainty is the quadratic sum of the two. Here I will refer to the

standard textbook for data reduction most commonly used in the first undergraduate physics

laboratory course: Bevington (Bevington and Robinson 1992). The first chapter description of

systematic and statistical uncertainties is perfectly adequate for interpreting the meaning of

the published result of any measured parameter in experimental elementary particle physics.

(Setting limits on parameters is somewhat more complicated, but considerations of systematic

and statistical uncertainty are also of great importance in setting limits on physical

parameters.)

Very briefly, statistical uncertainty is associated with precision, while systematic uncertainty

deals with accuracy:

12



The accuracy of an experiment is a measure of how close the result of the experiment is to the true value.

Therefore it is a measure of the correctness of the result. The precision of an experiment is a measure of

how well the result has been determined, without reference to its agreement with the true value. (Bevington

and Robnison 1992: 2; emphasis in the original)

Statistical uncertainty arises from random errors; and is fairly well understood and treated

using similar statistical techniques in both the physical and social sciences. The main

difference comes in the (non-)treatment of systematic uncertainty:
The accuracy of an experiment, as we have defined it, is generally dependent on how well we can control

or compensate for systematic errors, errors that will make our results different from the “true” values with

reproducible discrepancies. Errors of this type are not easy to detect and not easily studied by statistical

analysis. They may result from faulty calibration of equipment or from bias on the part of the observer.

They must be estimated from an analysis of the experimental conditions and techniques. A major part of

the planning of an experiment should be devoted to understanding and reducing sources of systematic

errors. (ibid.: 3; emphasis in the original. Note that the terms ‘error’ and ‘uncertainty’ are nearly

synonymous here – uncertainty being an estimate of the expected error.)

We should note here that the standard picture associated with differentiating between

systematic and statistical errors for a series of measurements is that the individual

measurements form a distribution around the true value. If there is no systematic bias then the

measured values are distributed randomly around the true value with standard deviation from

the true value equal to the statistical uncertainty. Systematic errors lead to a systematic shift

away from the true value, so that the measured values have the same distribution, but the

mean is shifted away from the true value by the amount of the systematic error. The

systematic uncertainty is thus an estimate of the size of that shift from all possible sources.

As illustration of the centrality of these simple concepts in experimental physics, we note that

every publication in experimental particle physics in which a parameter is measured presents

the estimated parameter together with separate estimates of both the statistical and systematic

uncertainties associated with the measurement. There are several conventions for doing so,

typically something similar to this:

P  =  E  ±  Ustat  ±  Usys

Here, P is the estimated parameter, E is the numerical estimate of the parameter, Ustat is the

estimated statistical uncertainty of E (usually from the fitting program used in the parameter

estimate), and Usys is the expected systematic uncertainty of the parameter, which cannot

come directly from the fitting program. The systematic uncertainty has to be estimated

according to how the measured parameter might be affected by external factors perhaps not

accurately taken into account in the fitting program. These sources would arise from not

13



exactly knowing the relationship between the measured quantities and the physical quantities

they are supposed to represent, since this could lead to a systematic bias in the measurement.

In principle, the reported systematic uncertainty is never significantly larger than the

statistical uncertainty, unless a single dominant source of systematic uncertainty is identified

and isolated. A measurement is said to have become systematics limited when the systematic

uncertainty begins to impinge on the total uncertainty of the measurement (as statistical

uncertainty is reduced by increasing statistics from measurement, for instance).

The only time that the reported systematic uncertainty significantly exceeds the statistical

uncertainty is where there is a single dominant source of systematic uncertainty that can be

separated from other smaller sources of systematic uncertainty. In this case the measurement

will be reported in a form such as:

P  =  E  ±  Ustat  ±  Udom ±  Uother

Here Ustat stands for statistical uncertainty, Udom stands for the single dominant systematic

uncertainty and Uother stands for the total of all other sources of systematic uncertainty. The

other sources of systematic uncertainty will again be smaller than (or at least not much larger

than) the statistical uncertainty. This format is used in cases where the single dominant source

of systematic uncertainty might be reduced in the future, perhaps by a different measurement,

so that the parameter can be estimated again in light of the reduction in that dominant source

of systematic uncertainty.

Uncertainties may also be asymmetric where the uncertainties involving possible positive bias

may be larger or smaller than those involving negative bias. This can be signified with a

slightly more complex notation; however this additional complication is not essential for our

discussion.

With this brief presentation of the centrality of the treatment of systematic uncertainty in the

experimental physical sciences, we can consider the implications of the absence of such

treatment. This would amount to producing high precision measurements with no accounting

for accuracy.

Locating systematic uncertainty in our diagram

Let us return to our conceptual diagram (see Figure 2). We can see where the treatment of

systematic uncertainty comes in. It is the uncertainty in going from our measured quantities

(in area B) to what is really out there (in area A) in the physical world. This piece is

necessarily absent in much of the social sciences, where socially generated quantities are
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considered (in area C). This is especially true for indicators, which are not explicitly

connected to any specific underlying physical quantity.

>> Figure 2 around here <<

To be fair, systematic biases are certainly not unknown to statistical analysis in the social

sciences. However, the approach to systematic bias in the social sciences is to determine the

size of the bias and to correct for it, removing the bias and leaving only statistical sources of

uncertainty. The problem comes from not knowing all sources of bias, not estimating the

expected uncertainties due to them and not reporting those uncertainties in addition to

estimates of systematic uncertainty.

The problem is fundamental. As discussed earlier, much of the data in the social sciences

consist of operational numbers. What this means is that the data are not measured in such a

way that the relationship between the measured value and the true value has meaning. For

instance, operational numbers are often defined as proxies for conceptual quantities, such as

well-being, human capital or wealth, where there need not be any real physical quantity

behind the concept. Even the value of money must be socially defined, so there is no direct

relation between amounts denominated in a currency and some existing true physical quantity.

Therefore the relationship between the indicated and true quantity is not well defined, since

there need not even be a true quantity. So while there may be a statistical distribution in the

indicator allowing for estimation of statistical uncertainty, systematic uncertainty is not even

conceptualised, let alone empirically identified.

Thus from the perspective of experimental physics, the lack and apparent impossibility of a

rigorous treatment of systematic uncertainty for the phenomena of the social world makes it

difficult to anchor an abstract model to the real world through analysis of accessible data. The

fact that the dynamics of social phenomena can change through time and across populations

without any direct connection to underlying natural laws makes it impossible to demonstrate

that a given abstract model does, in fact, describe what is really happening in some kind of an

underlying real world.

Open systems and systematic uncertainty

A very important point I would like to make here is the connection between systematic

uncertainty and open or closed systems in experimental physics. The issue is important

because of the critical realist critique on the use of mathematical methods in the open systems
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of economics (for a recent discussion see Mearman 2006). The point that I would like to make

here is that the issue of openness or closure in experimental physics is subsumed within the

concept of systematic uncertainty. As noted in the discussion on systematic uncertainty above,

all possible effects on the measurement from external sources have to be examined and

accounted for in the systematic uncertainty. Thus where a measurement is not dominated by

systematic uncertainty, we can take this to mean there is sufficient closure in the experimental

design for the measurement. There thus need not be absolute closure in a physical experiment,

just sufficient closure, which is accounted for in the systematic uncertainty.

3. The use of friction in physics

In  this  section I try to  dispel  some common misconceptions about the role  of friction in

physics, updating the concept to the 21st century and proposing a fitting counterpart in the

social  sciences.  First,  let  us  note  that  using an  analogy of  friction  in  physics  to  describe

processes  secondary  to  the  main  processes  under  consideration  has  a  long  history  in

economics.  Indeed  John Stuart  Mill  used the very words ‘[l]ike friction in  mechanics, to

which they have been often compared

’ (Mill 1967: 330; quoted with emphasis by Blaug 1980: 64) as early as 1844 to describe how

‘disturbing causes’ modify the more general laws of interest. This discourse is still prevalent

today and implies that there is no need to account for all of the effects involved in a given

process,  just  the main ones,  with the less important  effects  left  aside analogously to how

physicists are perhaps (wrongly) presumed to treat friction.

Rather than acting mainly as a source of difficult, non-essential and unwanted complications,

friction is well understood and utilised in particle physics. Friction (the processes involved in

the passage of particles through matter) is the set of precision tools used for producing data in

modern experimental physics. As I will discuss, for a modern particle physics experiment, no

friction means no data.

To back up this assertion, we make use of a general textbook by Dan Green (2005) of

Fermilab, The Physics of Particle Detectors. His first sentence in the Introduction of the book

is: ‘The subject of particle detectors covers those devices by which the existence and

attributes of particles in a detecting medium are made manifest to us’ (ibid.: 1). And how are

those particles in a detecting medium made manifest to us?
The role of detectors can be visualized by assuming that an interesting interaction occurs at a point in space

and time. From that point several secondary particles of different masses are emitted with various angles
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and momenta... It is the job of the detector designer to measure the time of interaction, t, and the vector

momenta, pi, and masses, Mi, of those emitted particles. The text is organized so as to show the ensemble

of tools available to the designer. (ibid.: 1)

The  bulk  of  Green’s  book  is  separated  into  two parts  –  the  first  of  which  covers  ‘non-

destructive’ measurements, or ‘those which do not appreciably change the measured particle’s

position or momentum’ (ibid.: 1), and the second covers ‘destructive’ measurements, where

‘the particle to be measured loses a significant fraction of its energy or is fully absorbed in the

detector’ (ibid.: 2). All of the detection techniques discussed in the book make use of the way

that  charged  and  neutral  particles  characteristically  lose  energy  in  traversing  a  detector

medium, and the many different (frictional) processes involved are then ingeniously exploited

in order to produce data for the study of the whatever underlying other physical processes

may be of interest. The only particles that do not lose energy in a detector are the neutrinos.

Neutrinos are perhaps the best way to stress the importance of friction in physics. The fact

that these are nearly ‘frictionless’ particles severely complicates their measurement.  Again

equating friction with energy loss in the detector medium, Green describes neutrino detection:

“The neutrinos carry off energy without interacting, and therefore their existence and energy

can be inferred by measuring the total final state energy in comparison to that of the well

prepared initial state’ (ibid.: 295). This means that instead of frictional effects interfering with

the  underlying  true  quantities,  the  lack  of  frictional  effects  really  complicates  the

determination of those quantities. In a particle detector, the least well-measured particles are

the neutrinos whose existence and kinetic properties have to be determined by calculating

what is missing from the measured properties of the particles that fortunately do undergo

frictional energy loss in the detector. So this is what should come to mind when we think of

friction in physics: multiple well understood processes used strategically for the production of

data – making the study of other underlying physical properties possible.

For additional information, a condensed overview entitled ‘Passage of Particles through

Matter’, complete with tables, formulae and a lengthy list of references for further

information, is made available yearly by the Particle Data Group (Yao et al. 2006: 258-270)

and is accessible online (http://pdg.lbl.gov/2006/reviews/passagerpp.pdf). A further

condensed overview of particle detection methods made available by the same group (ibid.:

270-292) details how the signals thus produced through the passage of particles through

matter (friction) are exploited for the production of experimental data

(http://pdg.lbl.gov/2006/reviews/pardetrpp.pdf).
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Although the physics associated with these processes is quite complicated, the specific details

are perhaps not as important as the fact that these numerous different processes involved in

producing and recording signals from the passage of particles through matter are very well

understood. Furthermore, even the uncertainties involved in unwanted random (Molière)

particle scattering and missed signals are thoroughly studies and accounted for in the

estimates of the systematic uncertainties of the final measurements, as discussed in the

previous section. Thus all effects of friction have to be carefully studied in order to

understand the relationship between the data in area B of figure 2 and the underlying physical

quantities in area A.

The bottom line of this section is that there is no counterpart in experimental physics to the

deliberate non-consideration of complicating effects not deemed as central processes of

interest in economics, which indeed are often quite inappropriately disregarded and dismissed

by reference to the effects of friction in physics.

Data production in social science – like friction in physics

Similar to the physics of particle detectors, which is the study of the use of the physical

processes (friction) used in producing data from the underlying real quantities of interest, we

have to study and properly account for the social processes involved in the production of data

in the social sciences, which are used to probe underlying socio-economic processes. If we

take the role of friction in physics as the clever way of using particle interactions in a detector

medium, then the counterpart of friction in the social sciences is social interaction with an

appropriately designed research method. Thus similarly to how there is no data without the

clever use of frictional particle interactions in the detector medium, the social sciences should

arguably best use social interactions in a social medium (participant observation or oral or

written accounts using language as the quintessential social medium) to produce data for the

study of the social phenomena of interest. Just as particles are induced to deposit the

information they carry away from the underlying physical processes we wish to study into the

detector medium, we aim to induce participants to socio-economic phenomena to deposit the

information they carry into the socio-linguistic medium so that those underlying phenomena

can be made accessible for study. This is the general approach we take in lifeworld

economics.

Of course there are obvious differences between data production in the social and physical

sciences: informants on social phenomena carry far richer information than can be carried by

and measured from elementary particles. Furthermore, information from the lifeworld does
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not arise from the external physical world, but from another localised part of the social world

from the collective social world of the social scientists (refer back to figure 2). This means

that while the concept of systematic uncertainty is not well defined and is not useful in the

social sciences (whereas it is essential in particle physics), it is also not necessary, since the

social scientist has direct access to the lifeworlds of informants through normal human social

interaction. The main difference in outcomes is that physical science needs to produce more

abstract mathematical descriptions of the underlying phenomena than is necessary or useful in

the social sciences.

4. Interpretive economics
In  this  section  I  summarise  the  interpretive  method  we  have  chosen  as  an  appropriate

approach to the study of lifeworld economics in the ongoing research project Habitus of the

Slovene Entrepreneur between 1960 and 1990. A more detailed account of the method and its

use is  available elsewhere (Turk 2007). We follow the Biographical-Narrative Interpretive

Method (BNIM) as described by Wengraf (2001). Chamberlayne et al. (2000) provide a good

case for and review of the biographical turn in social science. We use this approach for data

production and analysis on the realist social framework of Archer (1995), specifically using

her account of the internal  conversation (Archer 2003) as the key to linking structure and

agency. The BNIM approach thus separates the two tracks of the telling of the personal story

from the actual  course of the lived life,  and we analyse  the internal  conversations of key

managers – made external as they freely recount their stories in an impromptu fashion – using

the internal conversation as a way of linking the two tracks.

5. Summary and prospects
The purpose of this paper was to argue the case for using an interpretive approach to the study

of lifeworld economics in the specific case of a research project on Slovene managers under

socialism. In doing so, I have discussed the difficulty of properly accounting for systematic

uncertainty in mainstream approaches to economics. I presented a sketch of how the social

and physical sciences fit into our socially enacted world. I pointed out the difficulty in using

abstract mathematical models for human social systems due to the problem of properly

accounting for systematic uncertainty when dealing with operational numbers. I argued that

because of the nature of the type of data available for the study of human social reality, it is

not possible to reduce systematic uncertainty to the level that a model can be demonstrated to

explain phenomena in the real world in the way that it is done in physics. Furthermore,
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perhaps contrary to common misconception, friction is not invoked in physics as a simple

explanation or a catchall for discrepancies between model and what is observed in the real

world. Sources of uncertainty deriving from friction or experimental set-up are carefully

accounted for in the estimate of systematic uncertainty, which is explicitly noted and

generally smaller than the statistical uncertainty reported for the measurement. The lack of a

comparable treatment of systematic uncertainty in economics deprives the mathematical

models of the levels of demonstrability achievable in the physical sciences.

The reason I have devoted so much attention to this issue is to provide a sound justification to

the interpretive alternative I have suggested (Turk 2007), where we use such an approach in a

research project on Slovene managers under socialism. In that project we have so far

conducted interviews with eight influential managers from among the most important

companies involved in the rapid development of Slovenia during the socialist period. We are

now preparing the panel analysis work on the line-by-line textual analysis of the interview

transcripts and will soon have results to present.
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Captions and figures:

Figure 1. The sciences add to the world we know.

Figure 2. Systematic uncertainty in the physical sciences.
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(Figure 2)
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